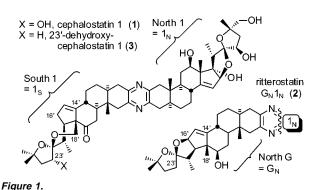


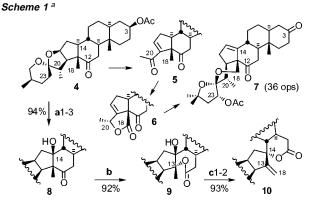
Dyotropic Rearrangement Facilitated Proximal Functionalization and Oxidative Removal of Angular Methyl Groups: Efficient Syntheses of 23'-Deoxy Cephalostatin 1 Analogues¹

Wei Li, Thomas G. LaCour, and P. L. Fuchs*

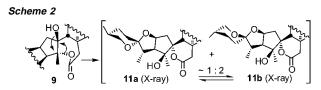
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907


Received October 18, 2001; Revised Manuscript Received March 4, 2002

We have reported the total syntheses of cephalostatin 1 (1) and designed interphylal analogue ritterostatin $G_N I_N$ (2) (14 nM)^{2a} via directed unsymmetrical pyrazine formation,^{2b} but no scaleable synthesis for such testing has been achieved. We felt that advancement to clinical trials would demand a practical route to the South 1-type unit for 1 or a closer mimic such as 3. The first-generation synthesis of South 1 subunit 7 (36 operations from 4) employed traditional Marker spiroketal degradation³ (4 to 5) and standard Pb-mediated hypoiodite proximal functionalization of the C18 angular methyl (5 to $6)^{2a-c}$ (Scheme 1). This approach is unattractive on the strategic level, requiring excision of the entire F-ring and subsequent reintroduction of the same atoms (6 to 7).

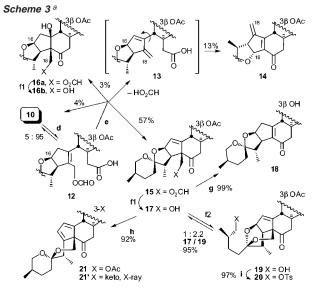

We disclose herein a remedy to this shortcoming by retaining all 27 carbon atoms of 4 in a new dyotropic rearrangement to permit proximal functionalization of C18 and trans-spiroketalization. The route is especially attractive since we improved transformation of 4 to β -hydroxyketone 8 from 27% (three operations) to a one-pot 94% yield.^{2a} As seen in Scheme 1, Baeyer–Villiger oxidation of 8 (mCPBA, Na₂HPO₄ buffer, 11 d, 25 °C) slowly afforded a 92% yield of lactone 9.4 Treatment of 9 with catalytic TMSOTf in toluene followed by addition of pyridine and SOCl₂ delivered exomethylene spirolactone 10 in 93% yield. Interruption of the sequence after rearrangement provided an equilibrium mixture (1:2) of the separable hydroxy spirolactones 11a and 11b (98%), whose structural assignments were confirmed by X-ray.⁵ Compound **11b** features a strong internal H-bond (13OH···22 β O) that renders the normally less-stable 22β spiroketal the thermodynamic product. Elimination of either of these alcohols as above gave 10 as a single isomer, confirming spiroketal reequilibration as noted during synthesis of North G.2a

Spirolactones **11a/11b** apparently arise via *stereospecific dyotropic rearrangement*⁶ of **9** (Scheme 2). Although there have been many important synthetic studies featuring expansion of β -lactones,⁷ dyotropic contraction of seven-membered lactones to their more stable 6-ring counterparts has apparently not been previously explored.⁸


Smooth S_N2' opening of the spirolactone moiety with HCOOH provided an equilibrium mixture (95:5) of allylic formate **12** and starting **10** (Scheme 3). Freidel–Crafts reaction employing PPSE⁹ (from $P_2O_5/(TMS)_2O$ in base-treated dichloroethane) gave formate **15** in fair yield along with **14** (presumably formed via **13**) and traces of **10** and **16a**. Hydrolysis of **15** with greater than stoichiometric KHCO₃ at room temperature led to desmethyl enone **18** via retroaldol cleavage of formaldehyde. Even catalytic carbonate also quantitatively provided **18**. However, deprotection of **15** with

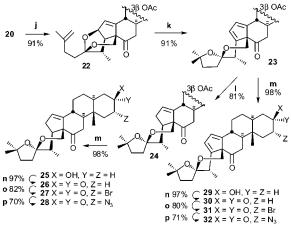
-

 a **a**1. $h\nu$, CH₂Cl₂; **a**2. evap; add 3:1 HOAc/H₂O; **a**3. add H₂CrO₄; **b**. 2 equiv mCPBA, 4 equiv Na₂HPO₄, CH₂Cl₂, 11 d; **c**1. 2% TMSOTf, PhMe, 3 h; **c**2. add 5 equiv pyridine, 1.5 equiv SOCl₂, 50–55 °C, 50 min.



catalyticbicarbonate at 25 $^{\circ}$ C afforded alcohol **17** with no trace of retro-aldol product **18** or hydrolysis of the C3 acetate.

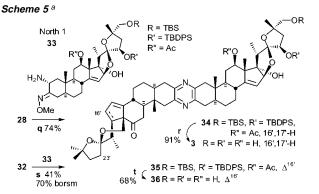
Elimination of allylic O16 accompanied transketalization of **17** with strong Lewis or protic acid to give D-ring diene **21**⁵ in high yield via internal ketal **19**; however, the action of warm aqueous acetic acid readily established a **17/19** equilibrium mixture (1:2.2) without further advancement to **21**. Conversion of **19** to tosylate **20** proceeded in excellent yield. By contrast, direct access to the 26-iodide from either **17** or **21** proved inferior using any variation of our $Ph_3P\cdot I_2$ method.


Tosylate **20** was eliminated via the iodide¹⁰ to olefin **22** (Scheme 4), setting the stage for a remarkable TMSOTf-mediated rearrange-

^{*} To whom correspondence should be addressed. E-mail: pfuchs@chem.purdue.edu.

^{*a*} **d.** 0.5 M HCOOH, 25 °C, 10 h; **e**. 30 equiv P_2O_5 , 45 equiv (TMS)₂O, DCE, 83 °C, 3.5 h; **f**1. 0.2 equiv KHCO₃, MeOH, 2 h; **f**2. 75% AcOH, 50–55 °C, 1 h, 2.2:1 **19/17**; **g**. 0.1 equiv K₂CO₃, MeOH, 25 °C, 10 h; **h**. 0.1 equiv TMSOTf, MC, 0 °C, 2 h; **i**. 3 equiv TsCl, 12 equiv pyr, MC, 0 °C, 16 h.

Scheme 4^a



^{*a*} **j**. 2.5 eq NaI, DMF, 50–58 °C, 10 h, then 1.5 equiv DBU, 80–85 °C, 3h; **k**. 0.1 equiv TMSOTf, MC, 0 °C, 2 h; **l**. H₂, 0.1 equiv Pd/C (5%), EtOAc, $-5 \rightarrow 10$ °C, 7 h; **m**. 1.0 equiv K₂CO₃, MeOH, 8 h; **n**. Jones, 0 °C, 15 min; **o**. 1.0 equiv PTAB, THF, 0 °C, 0.5 h; **p**. 4 equiv TMGA, nitromethane (freshly distilled), 10 h.

ment to transketalized diene **23**, whose structure was verified by X-ray of a derivative (see Supporting Information).⁵ Significantly, hydrogenation of diene **23** was rendered quite regio- and stereo-selective after much experimentation, affording 17α H olefin **24** with modest overreduction. Heightened reactivity toward nucleophiles imparted by the D-ring cyclopentadiene moiety was noted, and we therefore chose to elaborate **23** in parallel to **24**.

Mild hydrolysis (25 °C) of acetate 24 followed by oxidation gave 3-keto 26 in near quantitative yield, and diene 23 similarly afforded 3-keto 30. Our standard two-operation method² gave azidoketone coupling candidates 28 and 32 in good yield. Unions of 28 and 32 (Scheme 5) with protected North 1 partner 33^2 using the Guo unsymmetrical pyrazine synthesis^{2b} provided 34 (74% yield) and 35 (41% yield, 70% based on recovered 33), respectively. Finally, deprotection of 34 and 35 completed the synthesis of 3 (91% yield) and 36 (68% yield).

In conclusion, this work provides a superior new method for oxidative functionalization (or removal) of the C18 methyl group

^{*a*} **q**. 0.7 equiv **33**, PVP, 10% Bu₂SnCl₂, PhH, 80 °C, 3 h; **r**. 3 equiv TBAF, THF, 65 °C, 2 h, then 5 equiv K₂CO₃, aq MeOH, reflux, 0.5 h; **s**. 1.0 equiv **33**, PVP, 10% Bu₂SnCl₂, PhH, 80 °C, 3 h; **t**. 10 equiv TBAF, THF, 25 °C, 3 h.

featuring a previously unknown dyotropic rearrangement of a sevenmembered fused C-ring lactone to a 6-ring spiro lactone. Spiroketal equilibration studies led to the 23-deoxy South 1 subunit **26** in only 12 steps (23% overall yield) from hecogenin acetate **4**, and to strained diene South 1 analogue **30** in 11 steps (28% overall). Total synthesis of 23'-deoxy cephalostatin 1 (**3**) was accomplished in 16 operations from **4** (9% overall; average 86% yield per operation), and that of 16',17'-dehydro-23'-deoxy cephalostatin 1 (**36**) in 15 operations from **4** (8% overall; av 84%/op). Biological evaluation of these materials is currently underway and will be reported elsewhere.

Acknowledgment. We thank Proctor and Gamble (T.G.L. fellowship) and the National Institutes of Health (CA 60548) for funding. Arlene Rothwell provided the MS data.

Supporting Information Available: Representative experimental procedures, and ¹H, ¹³C NMR of all new compounds (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Cephalostatin Support Studies 22. For articles 20–21, see: Lee, S. M.; LaCour, T. G.; Lantrip, D. A.; Fuchs, P. L. Org. Lett. 2002, 4, 313–317.
 (2) (a) LaCour, T. G.; Guo, C.; Bhandaru, S.; Boyd, M. R.; Fuchs, P. L. J.
- (2) (a) LaCour, T. G.; Guo, C.; Bhandaru, S.; Boyd, M. R.; Fuchs, P. L. J. Am. Chem. Soc. **1998**, *120*, 692. (b) Guo, C.; Bhandaru, S.; Fuchs, P. L.; Boyd, M. R. J. Am. Chem. Soc. **1996**, *118*, 10672. (c) Bhandaru, S.; Fuchs, P. L. Tetrahedron Lett. **1995**, *36*, 8351. (d) Jeong, J. U.; Sutton, S.; Kim, S.; Fuchs, P. L. J. Am. Chem. Soc. **1995**, *117*, 10157. (e) Kim, S.; Sutton, S.; Guo, C.; LaCour, T. G.; Fuchs, P. L. J. Am. Chem. Soc. **1999**, *121*, 2056.
- (3) For an excellent historical perspective on the chemistry of Russell Marker, see: *Chem. Eng. News* **1999**, October 25, 78.
- (4) Oxidation of 4 (12 d) affords the expected 7-ring lactone (Rothman, E. S.; Wall, M. E.; *J. Am. Chem. Soc.* 1955, 77, 2229–2233; Rothman, E. S.; Wall, M. E.; Eddy, C. R. *J. Am. Chem. Soc.* 1954, 76, 527–532). Oxidation of systems such as 8 have not previously appeared.
- (5) X-ray data for compounds **11a**, **11b**, 3-keto-**21**', and a singlet oxygen adduct of **23** have been submitted to the Cambridge Crystallographic database.
- (6) A dyotropic (from the Greek dyo, meaning two) rearrangement can be defined as a process in which two σ-bonds simultaneously migrate intramolecularly. For a review of the dyotropic rearrangement by Reetz, who coined the term, see: M. Reetz, *Tetrahedron* 1973, 29, 2189.
- (7) (a) J.; Hoyer, K.; Müller-Fahrnow, A. Angew. Chem., Int. Ed. Engl. 1997, 36, 1476. (b) Black, T. H.; DuBay, W. J., III; Tully, P. S. J. Org. Chem. 1988, 53, 5922-5927.
- (8) For apparent examples of 6- to 5-ring lactone dyotropic rearrangements, see: Evans, R. H., Jr.; Ellestad, G. A.; Kunstmann, M. P. *Tetrahedron Lett.* **1969**, 1791–1794 and Cambie, R. C.; McNally, H. M.; Robertson, J. D.; Rutledge, P. S.; Woodgate, P. D. *Aust. J. Chem.* **1984**, *37*, 409–416. For 5- to 6-ring lactone rearrangement: Marson, C. M.; Grabowska, U.; Walsgrove, T.; Eggleston, D. S.; Baures, P. W. J. Org. Chem. **1994**, *59*, 284.
- (9) (a) Berman, E. M.; Showalter, H. D. H. J. Org. Chem. 1989, 54, 5642.
 (b) Imamoto, T.; Yokoyama, H.; Yokoyama, M. Tetrahedron Lett. 1981, 22, 1803.
- (10) Wolff, S.; Huecas, M. E.; Agosta, W. C. J. Org. Chem. 1982, 47, 4358.

JA017323V